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Abstract—This paper addresses a systematic method whereby
the conventional mode-matching method is generalized to the
cases where the set of modes used for the field expansion within a
cavity resonator are relaxed to be orthogonal or satisfy any specific
boundary conditions. It is shown that this approach is based on
the unrestricted variational formulation of a cavity resonator.
Reciprocity theorem and generalized reaction are the mathemat-
ical foundations of this new formulation. We have shown that
the conventional mode-matching method is a special case of this
generalized formulation and indeed is variational in nature. More
precisely, we have proven that, if the field distribution obtained
based on the conventional mode-matching method is used as a
trial one in some variational formulas, the resonant frequency will
be the same as the one obtained by the mode-matching method.

Index Terms—Cavity resonators, dielectric resonators,
eigenvalue problem, mode-matching method, reaction, variational
formulation.

I. INTRODUCTION

REALIZATION of high dielectric-constant and high
quality-factor ceramics make it possible to achieve very

stable and small-size resonators and filters in microwave/mil-
limeter-wave technology. To achieve good mechanical stability,
cylindrical dielectric resonators (DRs) are loaded in rectangular
enclosures for dual-mode filters [1]. Cylindrical DRs inside
cylindrical enclosures have been successfully analyzed by
the classic mode-matching method [2], [3]. However, this
approach cannot be used to analyze a cylindrical DR loaded in
a rectangular box. The reason lies in the fact that the boundary
conditions do not coincide with constant coordinate surfaces.
Unlike open structures, e.g., [4], using integral-equation
formulation of DRs inside rectangular enclosures becomes
too complicated because of a lack of a closed-form Green’s
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function and slowly convergent nature of other existing forms.
Scattering by a cylindrical post of complex permittivity in
a waveguide was investigated before by the point-matching
method [5] and a lossy dielectric post extending the full height
of a rectangular waveguide was considered by Gesche and
Löchel [6]. In [6], the Bessel–Fourier series is used to obtain
overlap integrals. Following the same approach, a generalized
Bessel–Fourier series is used to analyze more general DR
structures [7].

Recently, by generalizing the reaction concept in electromag-
netic theory, we have developed unrestricted and nonunique
variational formulas for cavity resonators, which relax any
specific boundary condition on the trial fields [8]. We have
observed that when a trial field obtained by the mode-matching
method is used in a particular form of the variational expressions,
the resonant frequency does not change. This behavior states that
this solution is a stationary point of a variational expression and
it should be expected since mode-matching method is equivalent
to the Galerkin approach. We are then led to generalize the
mode-matching method to nonorthogonal and free-boundary
cases where a set of basis functions used for the field expansion
inside a cavity resonator need not to be orthogonal or satisfy any
specific boundary conditions. Based on this new formulation,
cylindrical DRs inside rectangular cavities can be analyzed by
expanding the electromagnetic field in terms of a not necessarily
orthogonal set of basis functions. Since the basis functions
are not required to satisfy any specific boundary conditions,
this approach can potentially handle various aperture or tuning
mechanisms within a cavity resonator.

This paper is organized as follows. Details of this new formu-
lation are given in Section II. Section III is devoted to numerical
results, and conclusions are summarized in Section IV.

II. BASIC FORMULATION

The materials presented in this section are based on Part I of
this paper [8] and it is assumed that the reader already reviewed
it. The variational formulas derived in [8] put no limitation on
the class of the trial fields. In those formulas, since the frequency
is explicitly shown as a function of the trial field, we call those
formulasexplicit ones. This fact is the direct consequence of
having proportional to ,
which, in turn, is the consequence of inclusion of the volume

0018-9480/02$17.00 © 2002 IEEE



2492 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 11, NOVEMBER 2002

Fig. 1. Arbitrary cavity resonator.

sources in the formulation given in [8]. Applicability of the ex-
plicit formulas is limited to simple structures and their use in
more complicated structures is less practical because of the dif-
ficulty of finding the trial fields. On the other hand, there exists
a class of trial fields, which do not need any volume sources to
be supported. This class is a natural choice because the exact
resonant field is a source-free one. Since no volume current is
needed for these trial fields, the volume integrals will not nec-
essarily appear in the expression for . Therefore, the res-
onant frequency cannot be explicitly expressed in terms of the
trial fields and Harrington’s approach [9, pp. 340–345] is not
applicable. However, by using the Rayleigh–Ritz method, the
resonant frequencies can be obtained by a matrix equation and
seeking the zeros of the determinant of a matrix. Of course, for
this class of trial fields, the term
identically vanishes, and by adding this term to and
noting that the derivative of an identically zero term with re-
spect to the variational parameteralso vanishes, one may see
that the formulas in [8] are also valid for this type of trial fields.
We will address this issue shortly.

Let us consider the cavity resonator shown in Fig. 1. Assume
that and are arbitrary vector fields defined within the
cavity such that at some resonant frequencythey satisfy ho-
mogeneous Maxwell’s equations
and . Including the necessary surface
currents to support the discontinuities across the boundaries [8],
we get

(1)

where and are parts of the interior boundary made of
perfect electric and perfect magnetic conductors, respectively.

is just the interface between the two dielectric materials and
and , respectively, are parts of the cavity walls made of

perfect electric and perfect magnetic conductors. According to
the fundamental lemma in [8], the above expression is stationary
about the exact resonant field distribution. In fact, if we write

and , where and
are the exact resonant field distributions and and

satisfy homogeneous Maxwell’s equations at the same resonant
frequency, it can be shown that

(2)

which indicates the stationary character of (1). Equation (1) can
be converted to an expression in the- or -field form if one
obtains the -field in terms of the -field or vice versa. How-
ever, the resulting equations do not have any advantage over (1).
As can be read from (1), the frequency is not shown explicitly
in the expression for . Hence, we call it theimplicit for-
mula. However, by using the stationary character of (1) about the
exact resonant field, one may apply the Rayleigh–Ritz method
to expand the fields in terms of some basis functions and obtain
the resonant frequency and the unknown expansion coefficients
by a matrix equation.

Equation (1), which is obtained based on the assumption of
source-free trial fields, can be reduced to those explicit ones
in [8]. To this end, we add the following expression to the
right-hand side of (1):

(3)

Since for source-free trial fields
. Moreover, if and satisfy

homogeneous Maxwell’s equations at the same resonant fre-
quency and we define ,
then and, therefore, . More pre-
cisely, we have

(4)

where we have used .
Now the mathematical expression of
is the same as [8, eq. (43)]. Moreover, if for a fixed and
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satisfying homogeneous Maxwell’s equations at the same
resonant frequency , one defines

(5)

then we have which means that [8, eq. (46)]
is stationary about the correct resonant field for the trial fields
having no volume sources at the resonant frequency.

Let us consider the following equation:

(6)

where and are given, respectively, in [8, eq.
(34) and (35)]. By the same argument, it can be shown that (6)
is variational about the correct resonant field for the trial fields
without any volume sources at the resonant frequency if one
substitutes with in (1) and adds the
following expression to the right-hand side of (1):

Finally, the -field formulation [8, eq. (40)] is also variational
about the correct resonant field if one uses a trial field without
any volume source at the resonant frequency.

Let us turn to (1). As mentioned earlier, the resonant fre-
quency does not appear explicitly in that equation and the
Rayleigh–Ritz method is the only way to deal with the resonant
frequency. Under a special case where (see [8] for
the definition of ), the last term on the right-hand side of
(1) vanishes and we have

(7)

Now, we intend to show that by applying the Rayleigh–Ritz
method to (7) leads to a systematic method for deriving a system
of homogeneous linear equations, characterizing the cavity res-
onator, which we call thegeneralized mode-matching method
(GMMM). As a special case, the equations obtained by this
generalized formulation reduce to those obtained by the con-
ventional mode-matching method if the latter is applicable to a
cavity resonator. To this end, suppose that the correct resonant
field inside the cavity shown in Fig. 1 can be expanded in terms
of a not necessarily orthogonal set of basis functions and

as follows:

(8)

where and satisfy homogeneous Maxwell’s equa-
tions at the resonant frequency. ’s and ’s are the exact
yet unknown expansion coefficients. Suppose that one of these
coefficients, e.g., , is changed to . The correct field
distribution in region 1 with this change of coefficient reduces
to the approximate one as

(9)

whereas, in region 2, it remains unchanged and is the same as
the correct resonant field distribution. Therefore, by defining the
error field as

(10)

and using from (7), we get

(11)

where we have used the fact that the correct resonant field
satisfies all boundary conditions. The above result is expected
because . Using (8) to sub-
stitute for and in (11), one may see that

(12)

where, as indicated, can be obtained from (7) by sub-
stituting and for and , respectively, i.e.,

(13)

Equation (12), which is a linear equation in ’s and ’s,
is the mathematical statement of the so-called Rayleigh–Ritz
method. The systematic approach that bypasses using (13) for
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obtaining leads to the GMMM. To this end,
by using (8) to substitute for and in (13) and inter-
changing the summation with integral, we have

(14)

Let us write the boundary conditions on as
shown in the following:

if

if

if
(15)

if

if
if

(16)

where and are those points on and , respectively,
immediately inside region 1. The key idea of writing (15) is
equating the tangential component of the electric field in each
region to itself on the magnetic walls and to the corresponding
tangential component of the electric field in the neighboring re-
gion at the interface. Of course, the tangential components of the
exact electric field vanish on the perfect electric wall. Equation
(16) is written in a dual fashion for the magnetic field. By dot
multiplying (15) with and (16) with and integrating
over , we obtain

(17)

(18)

where we have used (8) to substitute forand . In the con-
ventional mode-matching method, where the basis functions or
the so-called modes are orthogonal on, the left-hand sides of
(17) and (18) are equal to

because if
. Therefore, by equating the right-hand sides of (17) and

(18), we end up with (14). For the general case where the basis
functions are not orthogonal, it is not clear that the left-hand
sides of (17) and (18) are equal. However, by subtracting both
sides of (18) from those of (17), the right-hand side of the re-
sulting equation is simply , where is given by
(10). Therefore, the left-hand sides of (17) and (18) must be
equal. From the above considerations, to obtain a system of ho-
mogeneous linear equations in ’s and ’s, one may start
with (17) and (18) and treat it as if the basis functions are or-
thogonal on and equate the right-hand sides of the equations.

Using a similar argument, by defining the error fieldas

(19)
and , one may show that

(20)

To obtain in a systematic way, we write

if and

if

if and
(21)

if and

if
if and

(22)
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where and are the points on and , respectively,
immediately inside region 2. To be consistent, we have directed
the unit normal to the boundary of region 2 out of that region.
Therefore, on and on . By dot
multiplying (21) with and (22) with and integrating
over the surface , we obtain

(23)

(24)

where we have used (8) to substitute forand . In the con-
ventional mode-matching method, the basis functions are or-
thogonal on the surface and and vanish
on and , respectively. In either case, the left-hand sides of
(23) and (24) are equal and by subtracting the right-hand side
of (24) from that of (23), one may obtain the expression for

. For the cases where the basis functions do
not satisfy the above constraints, the left-hand sides of (23) and
(24) are also equal. This is because by subtracting the right-hand
side of (24) from that of (23), one obtains the mathematical
expression of where the error field is given by (19).
Therefore, to obtain another set of linear equations in’s and

’s, one may start with (23) and (24) and equate the right-hand
sides of those equations.

The above systematic method for obtaining a system of ho-
mogeneous linear equations in unknown coefficients’s and

’s is based on the variational principle. In practice, like the
conventional mode-matching method, we express the unknown
field in each region as a linear combination of a finite number
of basis functions, which satisfy homogeneous Maxwell’s equa-
tions at an arbitrary frequency and set up the system of homo-
geneous linear equations, as explained above. Of course, since
these linear equations hold only at the resonant frequency of the
cavity, by seeking the zeros of the determinant of the coefficient
matrix, one may obtain the resonant frequency and the unknown
expansion coefficients within a multiplicative constant.

Since the conventional mode-matching method is a special
case of this generalized formulation, one may see that the former
is also based on the variational principle. In the Appendix, we
will prove that this is, in fact, the case and show that in a modal
structure if the field distribution inside a cavity resonator ob-
tained based on the conventional mode-matching method is used
in any variational formula with , the frequency will

Fig. 2. Cross section of a rectangular cavity resonator with a cylindrical
dielectric rod inside it.

be the same as that obtained by the mode-matching method. In
other words, in a modal structure, one cannot improve the ac-
curacy of the resonant frequency obtained based on the mode-
matching method by a variational formula with .

III. N UMERICAL RESULTS

In this section, we apply the formulation developed in the
preceding section to some physical structures. In the first ex-
ample, we use the GMMM to obtain the resonant frequency of a
rectangular cavity containing a cylindrical dielectric rod, which
extends the full height of the cavity. To this end, we consider
two separate regions inside the whole cavity, as illustrated in
Fig. 2. Region 1 is the set of points inside the cylindrical rod
and the rest of the cavity is considered as region 2. We expand
the field in region 1 in terms of the cylindrical harmonic ob-
tained by the Hertzian potential ,
where . The field inside region 2 is expanded in
terms of the basis functions obtained by

, where
and cm. It should be em-

phasized that the basis functions in region 2 do not satisfy the
boundary conditions at cm. Recall that the electric and
magnetic fields can be obtained in terms of the Hertzian poten-
tial function as follows:

The Bessel–Fourier series is used to analytically obtain the
overlap integrals over the cylindrical surface of the DR [6].
The resonant frequency obtained by using Ansoft HFSS is
1.303 GHz and that obtained by the GMMM is 1.32 GHz.
As can be seen, the agreement between these two different
methods is very good and the error is less than 1.3%. Moreover,
since no segmentation or mesh generation is required, the
GMMM is much faster than HFSS.

In the second example, we consider a two-dimensional par-
allel-plate resonator with a step discontinuity, as illustrated in
Fig. 3. All the dimensions are in centimeters. The frequencies
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Fig. 3. Cross section of a two-dimensional parallel-plate waveguide resonator
with a step.

TABLE I
COMPARISON OF THERESONANT FREQUENCIES(IN GIGAHERTZ) OF

THE TWO-DIMENSIONAL RESONATORSHOWN IN FIG. 3 OBTAINED

BY HFSSAND GMMM

shown in this figure are the first three resonant frequencies of the
TE mode in the parallel-plate waveguide resonator
without thestep .Byusing theGMMM,wehaveobtained
the resonant frequencies of the resonator with the step for three
different values of step height. To obtain the resonant frequen-
cies of this structure by Ansoft HFSS, we define a three-dimen-
sional resonator with the same cross section shown in Fig. 3 such
that the dimension in the-direction is less than the smallest di-
mension in the – –plane. The results are summarized in Table I.
Asillustrated,thefrequenciesobtainedbythesetwodifferentsim-
ulation methods are almost indistinguishable.

IV. CONCLUSION

In this paper, based on the variational formulation, we
have developed a systematic method for obtaining resonant
frequencies and field distributions inside a cavity resonator.
Application of the Rayleigh–Ritz method to the variational
formula results in the GMMM. In this generalized formulation,
one may relax the orthogonality and some specific boundary
conditions that should be met by the modes across some
surfaces inside the cavity. Hence, we call it the nonorthog-
onal and free-boundary mode-matching method. Since the

Fig. 4. Cavity resonator on which the conventional mode-matching method is
applicable.

conventional mode-matching method is a special case of this
generalized one, one may argue that variational principle is the
mathematical basis of the former. This should not be surprising
if one considers the mode-matching method as a special case
of the Galerkin approach.

APPENDIX

Here, we show that, in a modal structure, if one uses the
field distribution obtained by the conventional mode-matching
method as a trial one in different variational formulas with

, the frequencies obtained by the variational formulas will be
the same as that obtained by the mode-matching method. To this
end, consider the cavity resonator shown in Fig. 4. The cavity
walls are made of perfect electric conductors. Moreover, assume
that the electromagnetic field within the cavity can be expanded
in terms of the modes of regions 1 and 2 such that the modes of
region 2 satisfy the boundary conditions on the cavity walls. If
a trial field distribution obtained based on the conventional
mode-matching method in this cavity is used in the-field for-
mulation with , we have (25), shown at the bottom of
this page. Using the identity
and divergence theorem, (25) can be written as (26), shown at
the top of the following page. Since is obtained based on the
mode-matching method, it satisfies homogeneous Maxwell’s
equations and we have

and

(27)

(25)
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(26)

where is the frequency obtained by the mode-matching
method. Substituting the above two equations into (26), we get

(28)

If one expands and in terms of the modes of
each region and uses the equations obtained based on the
mode-matching method, one can show that the numerator
in (28) vanishes. Therefore, , as stated, . Note that
orthogonality of the modes across are not necessary for
vanishing of the numerator in (28).

In a similar fashion, it can be shown that, if one uses the field
distribution obtained by the mode-matching method as a trial
one in the -field or mixed-field formulation with ,
the resonant frequency will be the same as that obtained by the
mode-matching method.
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