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Abstract—This paper addresses a systematic method whereby function and slowly convergent nature of other existing forms.
the conventional mode-matching method is generalized to the Scattering by a cylindrical post of complex permittivity in
cases where the set of modes used for the field expansion W|tl'!|n ag waveguide was investigated before by the point-matching
cavity resonator are relaxed to be orthogonal or satisfy any specific thod [5 dal dielectri t extendina the full heiaht
boundary conditions. It is shown that this approach is based on method [5] and a lossy '? ectric pos e>§ ending the tufl heig
the unrestricted variational formulation of a cavity resonator. Of @ rectangular waveguide was considered by Gesche and
Reciprocity theorem and generalized reaction are the mathemat- L&chel [6]. In [6], the Bessel-Fourier series is used to obtain
ical foundations of this new formulation. We have shown that over|ap integra|5_ F0||O\Ning the same approach, a genera"zed

the conventional mode-matching method is a special case of thisgegsel Fourier series is used to analyze more general DR
generalized formulation and indeed is variational in nature. More structures [7]

precisely, we have proven that, if the field distribution obtained . . .
based on the conventional mode-matching method is used as a Recently, by generalizing the reaction concept in electromag-
trial one in some variational formulas, the resonant frequency will netic theory, we have developed unrestricted and nonunique

be the same as the one obtained by the mode-matching method. variational formulas for cavity resonators, which relax any
Index Terms—Cavity resonators, dielectric resonators, specific boundary condition on the trial fields [8]. We have
eigenvalue problem, mode-matching method, reaction, variational gbserved that when a trial field obtained by the mode-matching
formulation. method is used in a particular form of the variational expressions,
the resonant frequency does not change. This behavior states that
|. INTRODUCTION this solution is a stationary point of a variational expression and
. . . .. itshould be expected since mode-matching method is equivalent
EAL!ZATION of h'.gh dlelec_trlc-copstant an(_j high to the Galerkipn approach. We are then Ead to generglize the
quality-factor ceramics make it possible to achieve ver ode-matching method to nonorthogonal and free-boundary

l.f,tabtle and STa”r']S'ZF resgnatogs and f||tders 'nhm'(?ro‘;vath.'?ééses where a set of basis functions used for the field expansion
Imeter-wave technology. To achieve good mechanical stabilifyjqe 5 cavity resonator need not to be orthogonal or satisfy any
cylindrical dielectric resonators (DRs) are loaded in rectangul

| tor dual-mode filt 11, Cviindrical DRs insid %ecific boundary conditions. Based on this new formulation,
enlt_: (()js_urels orl ua -mohe ' Ers [1]. Cylin ;ICI? SI ms(lj lindrical DRs inside rectangular cavities can be analyzed by
cylindrical enclosures nave been successiully analyzed , panding the electromagnetic field in terms of a not necessarily
the classic mode-matching method [2], [3]. However, thl&r

h tb dt | lindrical DR loaded thogonal set of basis functions. Since the basis functions
approach cannot be used to analyze a cylindrica 0adeCI not required to satisfy any specific boundary conditions,

a rec_tgngular box. The reason lies in the fact th"."t the boundﬂ% approach can potentially handle various aperture or tuning
conditions do not coincide with constant coordinate surfac echanisms within a cavity resonator

Unlike open structures, e.g., [4], using integral-equation This paper is organized as follows. Details of this new formu-
ﬁ’ﬁion are given in Section Il. Section Il is devoted to numerical
"YSsults, and conclusions are summarized in Section IV,
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whereX, andY,, are parts of the interior boundary made of
perfect electric and perfect magnetic conductors, respectively.
Y; is just the interface between the two dielectric materials and
S. andS,,, respectively, are parts of the cavity walls made of
perfect electric and perfect magnetic conductors. According to
the fundamental lemma in [8], the above expression is stationary
about the exact resonant field distribution. In fact, if we write
E{, = E{ ,+pE], andH{ , = H{ ,+pH{ ,, whereE{ , and

¢ , are the exact resonant field distributions &fd, andH ,
satisfy homogeneous Maxwell’s equations at the same resonant
frequency, it can be shown that

d(c + pe,c + pe)a

dp =(c,e)a =0 (2)

p=0

which indicates the stationary character of (1). Equation (1) can
be converted to an expression in e or H-field form if one
obtains theH-field in terms of theE-field or vice versa. How-

sources in the formulation given in [8]. Applicability of the ex-eVer, the resulting equations do not have any advantage over (1).
plicit formulas is limited to simple structures and their use iS can be read from (1), the frequency is not shown explicitly
more complicated structures is less practical because of the #ifthe expression fofa, a).. Hence, we call it thémplicit for-
ficulty of finding the trial fields. On the other hand, there exist8ula. However, by using the stationary character of (1) about the
a class of trial fields, which do not need any volume sources@@act resonant field, one may apply the Rayleigh—-Ritz method
be supported. This class is a natural choice because the efa&xpand the fields in terms of some basis functions and obtain
resonant field is a source-free one. Since no volume current# resonant frequency and the unknown expansion coefficients
needed for these trial fields, the volume integrals will not ne€Y @ matrix equation. . .
essarily appear in the expression fara). . Therefore, the res-  Equation (1), which is obtained based on the assumption of
onant frequency cannot be explicitly expressed in terms of tpaurce-free trial fields, can be reduced to those explicit ones
trial fields and Harrington’s approach [9, pp. 340-345] is ndf [8]. To this end, we add the following expression to the
applicable. However, by using the Rayleigh—Ritz method, th@ht-hand side of (1):

resonant frequencies can be obtained by a matrix equation and

seeking the zeros of the determinant of a matrix. Of course, for U, , (E*, H*)

Fig. 1. Arbitrary cavity resonator.

this class of trial fields, the terrfy, E*-J* dv — [;, H*-M*“ dv A W . .
identically vanishes, and by adding this term(ta a), and = / Elz-Jipds _/‘ v Hi, Miyds
noting that the derivative of an identically zero term with re- Vi+ve e
spect to the variational paramefealso vanishes, one may see = E¢, - (v x HY , — jwrﬁ_zE?_z) ds
that the formulas in [8] are also valid for this type of trial fields. Vi+Va ’ -
We will address this issue shortly. _/ He . . (—V < . — i He )d
Let us consider the cavity resonator shown in Fig. 1. Assume vievs L2 7 Jerk 22 ) 45
that E* and H® are arbitrary vector fields defined within the (3)
cavity such that at some resonant frequengcyhey satisfy ho-
mogeneous Maxwell's equatiols x Ef , = —jw,u12Hi, Since for source-free trial fieldsJ{, = M{, =
andV x Hf , = jw,e1 2E{ ,. Including the necessary surface), U.,(E*,H*) = 0. Moreover, if E° and H® satisfy
currents to support the discontinuities across the boundaries f@lmogeneous Maxwell’'s equations at the same resonant fre-
we get quencyw, and we defind’(p) £ U, (E€ + pEe, He + pH*),
R thenU(p) = 0 and, therefore[dU /dp],—0 = 0. More pre-
(a,a)q = /2 (E‘f x Hf — E3 x H;) -ny ds cisely, we have
— [ (B xHi —E§ x Hy) -fas ds ‘ L
/ze ( ! ! 2 2 [dU /dp]py=0 = / (Ei,z Jio+El, 'J1,2)dv
g g 1+Va
+/ E“xH“-ﬁSds—/ E? x HS - fag ds : . . . .
S 2 2 S. 2 2 - / (Hl,z -Mi,+Hi,- M1,2) dv
g JV1+Va
+/ (E;xﬂg—ngHg)-ﬁzds —0 @)
X
_|_/ [2a(0) — 1] (E$ — ES) where we have used{, = J{, = M{, = M{, = 0.
o Now the mathematical expression @f, a), + U.,(E*, H*)

X (H’l" — H’Q") -ny ds (1) is the same as [8, eq. (43)]. Moreover, if for a fix€d and
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H° satisfying homogeneous Maxwell's equations at the samereE(""> andH (" satisfy homogeneous Maxwell’'s equa-

resonant frequenay,., one defines tions at the resonant frequeney. A,,’s andB,,’s are the exact
yet unknown expansion coefficients. Suppose that one of these
ga(p) = (c+ pe,c + pe)o + U(p) () Ccoefficients, e.g.A., is changed tol, + p. The correct field

distribution in region 1 with this change of coefficient reduces

— o — i
then we have, (0) = ¢/,(0) = 0 which means that [8, eq. (46)] 0 the approximate one as

is stationary about the correct resonant field for the trial field

having no volume sources at the resonant frequency. a c - (1)
Let us consider the following equation: E}1<r’ wr) | _ | Bilr,wr) + p]?"(l)(r’w’") 9)
H{(r,w,) H{(r,w,) + pH, "’ (r,w;)
Ng(E)
wi = De (E%) (6) whereas, in region 2, it remains unchanged and is the same as

the correct resonant field distribution. Therefore, by defining the
where NS (E*) and DS (E*) are given, respectively, in [8, eg.error fielde as
(34) and (35)]. By the same argument, it can be shown that (6) 1)
is variational about the correct resonant field for the trial fields | E1(r,wr) _ | Bu (r,wy)
without any volume sources at the resonant frequency if one Hf(r, wy) flﬁl)(r,wr)
substitutesH , with jw, 73V x E{, in (1) and adds the (10)
following expression to the right-hand side of (1):

and usinga = ¢ + pe from (7), we get

a a _ a (_: a .-
./V1+V2 Ef, -Ji,ds= /Vl+V2 E{, - (—jwreE] y + jw; 'V [d(c + pe,c —|—pe>1/2}
x iV X BY 5) dv. dp =0

Finally, theH-field formulation [8, eq. (40)] is also variational = / ES(r,w,) x HY(r,w,) - by ds
about the correct resonant field if one uses a trial field without Za
any volume source at the resonant frequency.

Let us turn to (1). As mentioned earlier, the resonant fre-
quency does not appear explicitly in that equation and the
Rayleigh—Ritz method is the only way to deal with the resonant ~ + / [Eg(r,wT) x HM (r,w,) — EQ(r,w,) x Hg}
frequency. Under a special case whefe) = 1/2 (see [8] for I3

—/ ED (r,w,) x HS(r,w,) - iy ds
e

the definition ofa(o)), the last term on the right-hand side of -nyds
(1) vanishes and we have = (c,e)1/s
<a,a>1/2:/ (Ef; xH’{'—E’Z’xH;’) fy ds =0 (11)
o

where we have used the fact that the correct resonant dield
- / (ET x Hi — E3 x H;) -nyds satisfies all boundary conditions. The above result is expected
= becausé(d/dp)(c + pe, c + pe)1/2]p—0 = 0. Using (8) to sub-
+ / ES x HS - ngds — / E; x Hy -ngds  stitute forE{ , andH{ , in (11), one may see that
JS,, Js.

+/ (B x H{ —Bf x H3) hsds.  (7) {d<°+pe’c+pe>1/1 _ dechyz a [‘9("’8‘)1/1
J3; p=0 p=0

dp A, | 04,

Now, we intend to show that by applying the Rayleigh—Ritz (12)

method to (7) leads to a systematic method for deriving asy5t9vrﬂere as indicatedg, ¢y » can be obtained from (7) by sub-
of homogeneous linear equations, characterizing the cavity rgﬁfutin,gEC andH¢ fof E“/andHa respectively, i.e

onator, which we call thgeneralized mode-matching metho ' e
(GMMM). As a special case, the equations obtained by thi _ . ¢ e e\ s

generalized formulation reduce to those obtained by the corz-c’ch/2 ~Js (E1 X Hy — By x H2) f ds

ventional mode-matching method if the latter is applicable to a

cavity resonator. To this end, suppose that the correct resonant — / (Ei x H{ — E5 X Hg) -y ds
field inside the cavity shown in Fig. 1 can be expande()j in terms He
. . ~ 2
qf(ell gl)Ot necessarily orthogonal set of basis functEﬁs and n / ES x HS - fig ds — / ES x HS - s ds
H, '~ as follows: S Sm Se
E(r,w) | [ 2% AEP(r,w,) + /2 (EE x Hi — Ef x Hg) -Apds.  (13)
i(r,w:) D AmI:ISTIL)(LwT) _ o o _ o
- . (2) Equation (12), which is a linear equation iy,,’'s and B,,’s,
E3(r,w;) _ Donet Bn]:]n (r,wr) 8 is the mathematical statement of the so-called Rayleigh—Ritz
HS(r, w,) > Ban)(r, W) method. The systematic approach that bypasses using (13) for
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obtaining(d/0A,)(c,c)1/2 leads to the GMMM. To this end,

(1) (1) g
by using (8) to substitute foE® and H¢ in (13) and inter- > Am/ B, (rwr) x Hy/(r,w,) - i ds

changing the summation with integral, we have

CC1/2 ZA /

T

EW(r,w,) x HY (r,w,) - iy ds

Am/ ED(r,w,) x HD (r,w,) - iy ds
b

B, |
pX

Bn/ E(l) (r,w, H(2)(r wy) - iy ds
pop

1 i

E(2) (r,w,

M3 iMsz

x HY(r,w,) - hig ds

+
)[

n 1

NE

n

=0.

(14)

Let us write the boundary conditions @h= 3; + .. + %, as
shown in the following:

flz X [Ei (I‘, wr)]

0, if r € L
fis X [E5(r,w,)] = fis x [ 202, BB (r,w,)]
= ifrey;
fiy x [ES(r,w,)] = fig X [z;’;:l Am]::‘ls,ll)(r,wr)} :
ifreXl

(15)
[Hi([‘ wr)] X flz

[H; (v, w0)] x i = [0, An L (r,00)] x i,
ifre !
[H5(r,w,)) x B = [0, BHD (r.w,)| x fis,
ifr el
0, if r e XL
(16)

whereX! andX!, are those points oB,. andy,,, respectively,
immediately inside region 1. The key idea of writing (15)

—1 =
=> Am/ EX(r,w,) x HY (r,w,) - Ay ds
m=1 e
+3 8, / EO(r,w,) x HO(r,0,) - i, ds
Jx;

(18)

where we have used (8) to substitute EfrandHS . In the con-
ventional mode-matching method, where the basis functions or
the so-called modes are orthogonalXrthe left-hand sides of
(17) and (18) are equal td,, [, E&l)(r,wr) X ﬂ,ﬁl)(r,wr) .
ny ds becausef. EY (r,w,) x H(r,w,) - Ay ds = 0 if
u # v. Therefore, by equating the right-hand sides of (17) and
(18), we end up with (14). For the general case where the basis
functions are not orthogonal, it is not clear that the left-hand
sides of (17) and (18) are equal. However, by subtracting both
sides of (18) from those of (17), the right-hand side of the re-
sulting equation is simplyc, e); >, = 0, wheree is given by
(10). Therefore, the left-hand sides of (17) and (18) must be
equal. From the above considerations, to obtain a system of ho-
mogeneous linear equations iy,,’s and B,,'s, one may start
with (17) and (18) and treat it as if the basis functions are or-
thogonal o and equate the right-hand sides of the equations.
Using a similar argument, by defining the error fieléis

Ef(r,w,) _m E5(r.w,) | _ | EP(rw,)
Hi(rw,) |~ [0] |[Bs(rw) |~ | AP (r,w,)
(19)
anda = c + pe, one may show that
B {d(c—{—pe?c—{—pe)l/ﬂ
dp p=0
_0<C7C>1/2
- 0B,
A 8<a,a>1/2
= | —= . 2
{ 55 (20)

'ﬁ'o obtain(9/9B,)(c, c)1/2 in a systematic way, we write

equating the tangential component of the electric field in each

region to itself on the magnetic walls and to the correspondingy [ES
tangential component of the electric field in the neighboring re-

gion atthe interface. Of course, the tangential components of the
exact electric field vanish on the perfect electric wall. Equation

(16) is written in a dual fashion for the magnetic field. By dot =
and integrating

multiplying (15) with FI" and (16) withE{"

over Y, we obtain

2 x HO(r,w,) - iy ds

(r,w,) x HD (¢, w,) - fig ds

+ z A, /E B0 (r,

w,) x HY(r,w,.) - iy ds

(17)

(r,w;)]
0, if r € ¥2 andS,

i % (B (r,0,)] = ¢ [0 AnES) (r,0,)]
if r e
X [B(r,0,)] = x |72, BaB (r,0,)]
if r € ¥2, andS,,
(21)
[HS(r,w,)] x A
[HS(r, w,)] X = [2211 Bnﬂ;”(r,w,,)] X 1,
if r € X2 andsS.
[ (x,0,)] % 2 = [0, AnHG) (r,0,)] x 2,
ifred;
0, if r € ¥2, andS,,
(22)
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ylem]

where¥? and¥:2, are the points o, andY,,, respectively,
immediately inside region 2. To be consistent, we have directed
the unit normal to the boundary of region 2 out of that region.
Thereforen = —nyonX andn = ngonS = S.+5S,,. By dot

multiplying (21) with ﬂ&” and (22) Withﬁ),(f) and integrating
over the surfac& + S, we obtain
B, E@(r,w,) x HY(r,w,)-nd
nz;l /2+s I (rywp) X Hy (r,w,) -nds 15 CLem]
= Z Am/ Eg)(r,wr) X 1215)2)(1‘,(4),,) (—nyx)ds
m=1 %
B, E® 2) x HO (v, w,) - Ad
+T; /E,,1+Sm (r7w ) < (I',w ) ne Height =4 cm
(23) Fig. 2. Cross section of a rectangular cavity resonator with a cylindrical
> . N dielectric rod inside it.
ZBn/ E? (r,w,) x H?(r,w,) - nds
n=1 £4S
) be the same as that obtained by the mode-matching method. In
=Y Bn/ EP (r,w,) x H? (r,w,) - i ds other words, in a modal structure, one cannot improve the ac-
n=1 Zet+Se curacy of the resonant frequency obtained based on the mode-

matching method by a variational formula with= 1/2.

(24) I1l. NUMERICAL RESULTS

In this section, we apply the formulation developed in the
where we have used (8) to substitute EsrandH;. Inthe con-  preceding section to some physical structures. In the first ex-
ventional mode-matching method, the basis functions are @inple, we use the GMMM to obtain the resonant frequency of a
thogonal on the surface andns x E, andns x H, vanish yectangular cavity containing a cylindrical dielectric rod, which
onS, andS,,, respectively. In either case, the left-hand sides gktends the full height of the cavity. To this end, we consider
(23) and (24) are equal and by subtracting the right-hand sigig, separate regions inside the whole cavity, as illustrated in
of (24) from that of (23), one may obtain the expression fqtjg 2. Region 1 is the set of points inside the cylindrical rod
(9/9By){c, c)1/2. For the cases where the basis functions dghg the rest of the cavity is considered as region 2. We expand
not satisfy the above constraints, the left-hand sides of (23) afd field in region 1 in terms of the cylindrical harmonic ob-
(24) are also equal. This is because by subtracting the right-hagghed by the Hertzian potenti@l{, = W5 z = J,(k,p)z,
side of (24) from that of (23), one obtains the mathematicguherekp = \/&-k,. The field inside region 2 is expanded in

expression ofc, e),/, where the error field is given by (19). terms of the basis functions obtained B . = ¥5 7 =
Therefore, to obtain another set of linear equationd,ifis and - gin[w,, (2 + a)]sin[nr(y + a)/2a]z, (n = 1,2,...), where

B,’s, one may start with (23) and (24) and equate the right-hapd | — , /k2— (7/24)? anda = 1.5 cm. It should be em-

sides of those equations. o phasized that the basis functions in region 2 do not satisfy the
The above systematic method for obtaining a system of hgoundary conditions at = 1.5 cm. Recall that the electric and

mogeneous linear equations in unknown coefficieifss and magnetic fields can be obtained in terms of the Hertzian poten-
B, ’s is based on the variational principle. In practice, like thga| function as follows:

conventional mode-matching method, we express the unknown

field in each region as a linear combination of a finite number H® = —jwe,z x VU°

of basis functions, which satisfy homogeneous Maxwell's equa- 1 ove 20

. . E¢ = ” °z.
tions at an arbitrary frequency and set up the system of homo- e (1) ( 92 > + pr ()b 02

geneous linear equations, as explained above. Of course, since
these linear equations hold only at the resonant frequency of Hiee Bessel-Fourier series is used to analytically obtain the
cavity, by seeking the zeros of the determinant of the coefficieoterlap integrals over the cylindrical surface of the DR [6].
matrix, one may obtain the resonant frequency and the unknoWne resonant frequency obtained by using Ansoft HFSS is
expansion coefficients within a multiplicative constant. 1.303 GHz and that obtained by the GMMM is 1.32 GHz.
Since the conventional mode-matching method is a specfd can be seen, the agreement between these two different
case of this generalized formulation, one may see that the formegthods is very good and the error is less than 1.3%. Moreover,
is also based on the variational principle. In the Appendix, wance no segmentation or mesh generation is required, the
will prove that this is, in fact, the case and show that in a mod&MMM is much faster than HFSS.
structure if the field distribution inside a cavity resonator ob- In the second example, we consider a two-dimensional par-
tained based on the conventional mode-matching method is ualidl-plate resonator with a step discontinuity, as illustrated in
in any variational formula withh = 1/2, the frequency will Fig. 3. All the dimensions are in centimeters. The frequencies



2496 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 11, NOVEMBER 2002

6.0 !

—f; =3.905 GHz

h=0 ——~f,=5.831 GHz

L~ f, =6.500 GHz

h
_____ l :
—= 0.7 ~— i . . . . .
_ ) ) ) ) Fig. 4. Cavity resonator on which the conventional mode-matching method is
Fig. 3. Cross section of a two-dimensional parallel-plate waveguide resonag@plicable.
with a step.
o . TABLFE l (N G ) conventional mode-matching method is a special case of this
OMPARISON OF THERESONANT FREQUENCIES(IN GIGAHERTZ) OF ; P o ;
THE TWO-DIMENSIONAL RESONATOR SHOWN IN FIG. 3 OBTAINED generahze_d one, qne may argue that_ variational pI’InCIp|e I_S _the
BY HFSSAND GMMM mathematical basis of the former. This should not be surprising
if one considers the mode-matching method as a special case
HESS CMMM of the Galerkin approach
h fi fa fa fi fo fs pPp :

0.3 13.909 | 5.841 | 6.50 |3.910 [ 5.842 | 6.51

1.0 | 3.941 | 5.900 | 6.552 | 3.934 | 5.892 | 6.549

2.5 | 4.066 | 6.201 | 6.600 | 4.056 | 6.170 | 6.600 APPENDIX

47] 412 6408 663 | 412 | 6.406 | 6.633 Here, we show that, in a modal structure, if one uses the
fii1eld distribution obtained by the conventional mode-matching
the . .. L .
method as a trial one in different variational formulas with=

shown in this figure are the first three resonant frequencies of

TE”:T; O?ter(]fgéfz EIB) th hegiﬁ'ﬁg:&“ﬁ '\\/Avave;ghl{ald: ;ﬁg-ﬁtgi /2, the frequencies obtained by the variational formulas will be
withou ph = 0).Byusing wenav N€%ihe same as that obtained by the mode-matching method. To this

the resonant frequencies of the resonator with the stepforthger%, consider the cavity resonator shown in Fig. 4. The cavity

different values of step height To obtain the resonant frequen-Wa”S are made of perfect electric conductors. Moreover, assume

cies of this structure by Ansoft HFSS, we define a three-dme@}-ﬁt the electromagnetic field within the cavity can be expanded

sional resonator with the same cross section showniin Fig. 3 SY§terms of the modes of regions 1 and 2 such that the modes of

tmhz;{q:;gndimﬁgs_'of I?a;hégh;j'lr:iﬁgcs)zlltss frsesst:(?rxgﬁzzn;{aﬁzﬁg egion 2 satisfy the boundary conditions on the cavity walls. If
“P )  trial field distributionE* obtained based on the conventional

Asillustrated, thefrequenciesobtained bythesetwodifferentsil;g—ode_rmmhing method in this cavity is used in Bxgield for-

ulation methods are almost indistinguishable. mulation witha = 1/2, we have (25), shown at the bottom of

this page. Using the identity-(AxB) = B-VxA—A-VxB

and divergence theorem, (25) can be written as (26), shown at
In this paper, based on the variational formulation, whe top of the following page. Sin@* is obtained based on the

have developed a systematic method for obtaining resonamde-matching method, it satisfies homogeneous Maxwell’'s

frequencies and field distributions inside a cavity resonat@guations and we have

Application of the Rayleigh—Ritz method to the variational

formula results in the GMMM. In this generalized f_qrmulatlon, MZ%V X Ef 5 = —jw, Hi,

one may relax the orthogonality and some specific boundaé

conditions that should be met by the modes across some

surfaces inside the cavity. Hence, we call it the nonorthog-

onal and free-boundary mode-matching method. Since the V x u;;v x Ef, = wfneLQEiZ (27)

IV. CONCLUSION

Josvs #15(V % By ) - (VX By )dvt fo (n7'V X Bf + 155"V x Eg) x (Bf - E3) -fis ds

a a
6172E172 . E1,2 dv

w2

25
fV1 +V2 ( )
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Jorivs Blo -V X 75V x ES v+ [y (Mglv x B¢ x B¢ — u71V x E¢ x Eg) hy ds
w =

a a
€12E7 - Ef 5 dv

26
fVl +Vs ( )

where w,, is the frequency obtained by the mode-matching [6] R. Gesche and N. Léchel, “Scattering by a lossy dielectric cylinder in a
method. Substituting the above two equations into (26), we get ~ rectangular waveguide|EEE Trans. Microwave Theory Techol. 36,
pp. 137-144, Jan. 1988.
[7] X.-P. Liang and K. A. Zaki, “Modeling of cylindrical dielectric
resonators in rectangular waveguides and cavitieEEE Trans.
Microwave Theory Techvol. 41, pp. 2174-2181, Dec. 1993.

_1 o o @ o R [8] A. M. Shams-Zadeh-Amiri, S. Safavi-Naeini, S. K. Chaudhuri, and R.
W fzi (El X H2 - E2 X Hl) -ny ds Sabry, “Generalized reaction and unrestricted variational formulation of
+7 2 2 . cavity resonators—Part |: Basic theorfEEE Trans. Microwave Theory
Jvi v, €12E7 5 - Ef 5 dv Tech, vol. 50, pp. 24802490, Nov. 2002.

[9] R.F. Harrington,Time—Harmonic Electromagnetic FieldsNew York:
(28) McGraw-Hill, 1961.

If one expandsE{, and Hf, in terms of the modes of
each region and uses the equations obtained based on the
mode-matching method, one can show that the numerator
in (28) vanishes. Therefore, , as stated= w,,. Note that
orthogonality of the modes acrod are not necessary for
vanishing of the numerator in (28).

In a similar fashion, it can be shown that, if one uses the fie
distribution obtained by the mode-matching method as a tri
one in theH-field or mixed-field formulation withae = 1/2,
the resonant frequency will be the same as that obtained by
mode-matching method.
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